In A Student’s Guide to Python for Physical Modeling , we emphasized NumPy arrays and paid less attention to Python lists. The reason is simple: In most scientific computing applications, NumPy arrays store data more efficiently and speed up mathematical calculations, sometimes a thousandfold. However, there are some applications where a Python list is the better choice. There are also times when the choice between a list and an array has little or no effect on performance. In such cases a list can make your code easier to read and understand, and that is always a good thing. In this post, I will describe Python lists and explain a special Python construct for creating lists called a list comprehension . I will also describe a similar construct called a generator expression . Lists A list is an ordered collection of items. You may have made a “To Do” list this morning or a grocery list for a recent trip to the store. In computer science, a list is a data s...